No more big bench

No more big bench presses for me.  Since my torn pec problem two years ago I have been limited to cables and hammer strength.  But its getting the job done.  I am still seeing a massage therapist which has helped tremendously.  I also turned 47 today and it does make a difference in strength, my size is staying about the same.  I have cut down on the weight in my dead-lifts from 605 for reps to 510 and down to 425 for reps.  Squats I am 525 for reps on the smith machine and 415 for reps in the rack.

The pec tear was a huge offset,(it was a 2 inch tear), but I am grateful for the big dumbbells and bench I got before it happened.  I can do up to 100 lbs dumbbells now, but it is awkward to say the least.  I still have  a small dimpled peck area when flexing but it is usually unnoticeable at a relaxed stance.

The scary thing about these tears are the fact that I never had any indications of it coming on.  I felt strong and normal with good presses, the only thing that I could say is I was using the hand made bar that made the weights wobbly and I think my arm got to much outside of a safe zone of stability.  BUT I have heard of muscle tears regardless of proper form.

I would highly recommend warming up the muscles.  I do cable to pump the blood into the muscles before any free press weights.

Ladies and gentlemen our journey in the iron asylum is a hard goal with years of pain and sweat.  It is all worth it.

I cannot stay away from it, injuries or not.

Just use your brain as the first muscle to flex in judging your progress without going beyond something not rational to safety.

Good luck stay safe.

Advertisements

UPDATE

Hello everyone. It has been some time since I have posted on my Blog. I am sorry for those following my blog on Blogger for I just got done moving it and closing some Google accounts. I hope that you have found the new web address.  The WordPress one has not changed. I am still in the lifting world. Setting no goals, I have just maintained and in some lifts reduced the amount. I will be turning 47 soon. I do not want to tear anymore muscles or get injured in any way. Though my mind loves the heavy lifting, and I continue to lift hardcore I notice my body talking to me to ease off some days .  I am great full for meeting my goals and sometimes exceeding them. My pectoral tear is still healing to some degree. I do notice being a little stronger. It will never be the same as I accept it and happy to still be able to lift. The imprint of the tear is still there and it is still awkward to do bench or dumb bells but I can still do them.

Today was leg day

315X12 warm up Smith machine
415X10
525X10
525X10
Leg press
1200X12
1200X10
1200X9
1200X9
Walking Dumbell Lunges
90X2
85X2
80X2
85X2

Pec tear update

One of the best gifts I received from my wife was an hour massage from a therapist in town that is recommended.  I have been four times now and this person has done more for helping to restore and heal my torn pec than anyplace else. She can move muscle back into place as she found on out in my upper bicep area that I was unaware of. Since it is back in place my bicep is more proportionate and I have gained strength there as well. I wish that I would have been to this treatment earlier in my injury, but happy to have some needed recovery that is noticeable.  I am able to do dips comfortably< I have not tried weighted ones yet.  Wide grip pull ups are sometimes uncomfortable still.  I would recommend to those who have had a pec tear or other muscle tear to see a massage therapist after you see your sports doctor.   Earlier I went to a chiropractor for Active Release Treatment. (ART). I thought it promising to some degree but the massage therapist is showing results to my severe tear.

 

I decided to take a week off lifting upper body. I have stepped up cardio workouts. I did do squats yesterday, following with leg presses and FST 7 on the leg extensions to finish off a quality workout.

 

Power rack squats

1X 315 12 reps warm up

1X 510  10 reps

1X 510  8 reps

1X 495  6 reps

1X 405  10 reps

Leg press

1X  1100 12 reps

1X 1200 10 reps

1X  1200 10 reps

Leg raises

1X 200 12 reps

1X 190  12 reps

1X  170 8 reps

1X  180 10reps

1X 170 10 reps

1X  190 8 reps

1X 180 10 reps

no more than 30 sec rest between leg raises.

 

 

Today I will be doing more cardio on the stair climber or step climber as I feel this is good equipment in a more vertical redundant to your body weight pacing your heart rate up in a good manner. Compared to the cross trainer or as some would call “elliptical” you are using more centrifugal  force forward and denying a good quality heart rate elevation.

 

Pec tear on 3-10-2011

Good luck in your workouts and keep the challenge up.

Treating and Preventing DOMS

Johndavid Maes, and Len Kravitz, Ph.D.

INTRODUCTION
Delayed onset muscle soreness (DOMS) is a phenomenon that has long been associated with increased physical exertion. DOMS is typically experienced by all individuals regardless of fitness level, and is a normal physiological response to increased exertion, and the introduction of unfamiliar physical activities. Due to the sensation of pain and discomfort, which can impair physical training and performance, prevention and treatment of DOMS is of great concern to coaches, trainers, and therapists. In a recent review, Szymanski (2001) provides an extensive evaluation of the mechanisms and treatments for DOMS. Although science has not established a sound and consistent treatment for DOMS, previous interventions include pharmaceuticals, pre-exercise warm-up, stretching, massage, and nutritional supplements, just to name a few. The pain and discomfort associated with DOMS typically peaks 24-48 hours after an exercise bout, and resolves within 96 hours. Generally, an increased perception of soreness occurs with greater intensity and a higher degree of unfamiliar activities. Other factors, which play a role in DOMS, are muscle stiffness, contraction velocity, fatigue, and angle of contraction. In order to minimize symptoms and optimize productivity in a physical training program it is vital to understand the proposed mechanisms of injury, which occur in DOMS. In another recent review, Connolly, Sayers, and McHugh (2003) present an explanation for the mechanisms of injury, as well as various modalities for prevention and treatment of DOMS. The purpose of this article is to provide a review of the mechanisms of injury associated with DOMS as well as an evaluation of the recommendations of various proposed treatments.

MECHANISMS of INJURY
For many years the phenomenon of DOMS has been attributed to the buildup of lactate in the muscles after an intense workout. However, this assumption has been shown to be unrelated to DOMS. The perceptions of pain and soreness that result from intense eccentric exercise are not related to lactate buildup at all. Szymanski’s review (2001) notes that blood and muscle lactate levels do rise considerably during intense eccentric and concentric exercise, however values for blood and muscle lactate return to normal within 30-60 minutes post exercise. Szymanski also notes that concentric exercise produces two-thirds more lactate than does eccentric exercise. If DOMS was brought on by the accumulation of lactate in the muscles, there would me more of an incidence of DOMS after concentric exercise than that of eccentric exercise. Furthermore, blood lactate levels drop to normal values within 60 minutes of an intense exercise bout. The symptoms of DOMS peak within 24-48 hours after an intense eccentric exercise bout when blood lactate levels have been at normal levels for a considerable amount of time.

DOMS is often precipitated predominantly by eccentric exercise, such as downhill running, plyometrics, and resistance training. In their review, Connolly et al. (2003) explain that the injury itself is a result of eccentric exercise, causing damage to the muscle cell membrane, which sets off an inflammatory response. This inflammatory response leads to the formation of metabolic waste products, which act as a chemical stimulus to the nerve endings that directly cause a sensation of pain. These metabolic waste products also increase vascular permeability and attract neutrophils (a type of white blood cell) to the site of injury. Once at the site of injury, neutrophils generate free radicals (molecules with unshared electrons), which can further damage the cell membrane. Swelling is also a common occurrence at the site of membrane injury, and can lead to additional sensations of pain. Connolly et al. also note the importance of differentiating DOMS from other injuries such as muscle strains. This difference is important to appreciate because when muscle strain is sustained from vigorous exercise, particularly eccentric exercise, it can severely worsen the injury. In contrast, in a muscle that is experiencing DOMS, continued eccentric exercise is still possible without further muscle damage. When dealing with DOMS it is important to differentiate it from muscle strains, recognizing that continued exercise is still possible with DOMS, but not with muscle strain.

Symptoms Associated With DOMS
Both Connolly et al.(2003) and Szymanski (2001) agree that typical symptoms often associated with DOMS include strength loss, pain, muscle tenderness, stiffness, and swelling. Loss of strength usually peaks within the first 48 hours of an exercise bout, with full recovery taking up to 5 days. Pain and tenderness peak within 1-3 days after exercise and typically subside within 7 days. Stiffness and swelling can peak 3-4 days after exercise and will usually resolve within 10 days. It is important to note that these symptoms are not dependant on one another and do not always present at the same time.

Proposed Interventions
Although there has been a considerable amount of research on the treatment of DOMS, to date no one treatment has proved dominant in consistently preventing or treating DOMS. Among popular interventions are pharmacological treatments using non-steroidal anti-inflammatory drugs (NSAIDs), therapeutic treatments utilizing physical modalities such as stretching and warm-up, and interventions using nutritional supplements. The following is a discussion and evaluation of these proposed mechanisms of treatment and the prevention of DOMS.

Benefits of NSAIDs
Nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, ibuprofen, and flurbiprofen have long been considered as a treatment for alleviating the symptoms of DOMS. Theoretically, NSAIDs have a strong case for helping to combat the inflammation and swelling which occurs with exercise induced muscle damage. Despite this strong theoretical backing, research done on the effectiveness of NSAIDs has provided mixed and conflicting results. Due to inconsistencies among studies between type, dose, and timing of various NSAIDs, as well as associated negative side effects such as gastrointestinal distress, and hypertensive effects, NSAIDs do not appear to be an optimal choice for treatment of DOMS.

Benefits of Nutritional Supplementation
Nutritional supplements have also emerged as a potential treatment for DOMS. Anti-oxidant’s, such as vitamins C and E, are known to reduce the proliferation of free radicals, which are thought to be generated during the inflammatory response potentially causing more damage to an affected muscle. Connolly et al. report that the effectiveness of anti-oxidant therapy has been shown to be inconsistent among several studies examining it’s potential for treatment. Other nutritional supplements which have been investigated for treatment of DOMS include coenzyme–Q and L-carnitine, however neither supplement has been shown to effectively treat DOMS, and may even worsen symptoms.

Benefits of Warm-up
Unlike the use of NSAIDs and nutritional supplements, pre-exercise warm-up has been shown to be effective in reducing symptoms of DOMS. In his review, Szymanski (2001) notes that traditional warm-up before exercise has been suggested as a means of preparing the body for exercise, improving athletic performance, and reducing DOMS and associated muscle damage. Using a warm up to increase muscle temperature is thought to improve muscle function by leading to greater muscle elasticity, an increased resistance of muscle tissue to tearing, more relaxed muscles, an increased extensibility of connective tissues within muscle, and decreased muscle viscosity. This in turn allows for more efficient muscle contractions, which deliver increased speed and force. Szymanski also reports that several studies provide evidence of concentric warm-up before eccentric exercise, thus preparing the body for the stress caused by overloading the muscles with eccentric activity.

Szymanski (2001) adds that pre-exercise warm-up can be placed into two categories, general and specific. General warm-up is aimed at increasing core body temperature by performing movements that require the use of large muscle groups, such as calisthenics and running. Specific warm-up, mimicking the movement patterns of the actual exercises, is aimed at increasing the local muscle temperature in the muscles, which will be used in the specific sport or physical activity. Due to the benefits of warm-up it is advisable to precede an intense exercise bout with an adequate general and specific warm-up. Warm-up duration can vary greatly, depending of the intensity of physical activity, environmental conditions, and fitness level of clients (less fit people may need a longer warm-up).

Repeated-Bout Effect
In addition to warming up, Szymanski (2003) introduces the repeated-bout effect as a meaningful means of reducing DOMS. The repeated bout effect is a progressive adaptation to eccentric exercise. It has been reported that repeated bouts of lower intensity eccentric exercise performed 1-6 weeks before the initial higher intensity eccentric bouts have been shown to consistently reduce DOMS and exercise induced muscle damage. Thus, a gradual introduction of eccentric exercise, over a period of weeks, is encouraged. Szymanski states that the repeated bout effect is proposed to allow for a faster recovery of strength and range of motion in effected muscles, providing for increased resistance to damage after the first bout. It is also thought that muscle and connective tissue gradually adapt to increasing intensities of eccentric exercise, minimizing incidence and severity of DOMS.

Conclusion
With a better understanding of the causes of DOMS, the health and fitness professional is better equipped to help clients avoid it’s complications. It is hoped that the information in this article will add to the ‘tool box’ of knowledge from which personal trainers can draw from in an effort to optimize the health and fitness results obtained by their clients.